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ract- A new adaptive signal-preserving technique for
uppression in functional magnetic resonance imaging
data is proposed based on spectrum subtraction. The
d technique estimates a model for the power spectrum of
 noise from the acquired data. This model is used to
 a noise-suppressed power spectrum for any given pixel
urse by simple subtraction of power spectra. The new
ue is tested using computer simulations and real data for
lated fMRI experiments. The results show the potential

new technique in suppressing noise while preserving the
eterministic components. Moreover, further analysis
rincipal component analysis (PCA) and independent
ent analysis (ICA) shows a significant improvement in
nvergence and clarity of results when the new technique
 This suggests the value of the new technique as a useful
essing step for this type of signals.
s – fMRI, signal denoising, PCA, ICA.

I. INTRODUCTION

ctional Magnetic Resonance Imaging (fMRI) provides
ble noninvasive tool for investigating brain function. It
s brain activity during mental or physical activity by
g the corresponding increase in average cerebral
xygenation or cerebral blood flow [1]. To observe
emodynamic changes, rapid acquisition of a series of
images is performed. The sequence of images is
d to detect such changes and the result is expressed in
 of a map of the activated regions in the brain.

ssically, most of fMRI studies were conducted using
called block design approach, whereby two sets of data
uired. First, a number of frames are acquired while the

 is at rest or under some baseline condition, then
 set is acquired during the stimulus [1]. This pattern is
d for a number of cycles in order to improve SNR,
would otherwise be quite low. Recent advances in both
quisition and analysis have improved the temporal
on of fMRI and made it possible to observe transient
namic changes with reasonable accuracy. A good

e for that is a new experimental design, similar to that
ed-response potential (ERP) protocol, called single

 event-related fMRI. In this new design, the subject
s a short stimulus or performs a single instance task
he resultant transient response is measured [2]. ER-
ffers many advantages over block design that include

ity, investigation of trial-to-trial variations, extraction
h-dependent information and direct adaptation of the
s used for ERP to fMRI [2]. The main drawback of
RI is the degradation in signal to noise ratio (SNR) due
transient nature of the response. As a result, such
now include epoch averaging. Nevertheless, this

at the expense of suppressing the information about
bject variations related to psychophysiological
n with each execution of the task. Therefore, a

processing method that can be used to suppress noise in the
acquired data would be very useful to reduce the experiment
duration and preserve the information within the acquired
data.

Several methods of data analysis have been used to
process the fMRI raw data. The ultimate goal of such analysis
is to try to separate signal components due to true activation,
physiological fluctuations and random noise. The latter two
components are considered as nuisance and must be removed
for correct results. Among the most powerful techniques that
can be used to separate signal components are those based on
blind source separation such as principal component analysis
(PCA) and independent component analysis (ICA). These
techniques decompose the signal sources into either
orthogonal components (PCA) or more generally independent
components (ICA). According to the assumptions of both
techniques, the number of independent signal components
must be less than or equal to the number of signals to be
analyzed. Otherwise, the separation of components yields
incorrect results or even may not converge at all as in ICA.
Unfortunately, this condition is not satisfied in fMRI data
sets. Given the general assumption of uncorrelated noise, the
number of components of random noise alone is equal to the
number of signals. The total number of components has to
add the number of components due to physiological
fluctuations as well as the activation components. As a result,
the use of PCA and ICA based techniques may not yield
useful results in this case. Therefore, a technique that
suppresses random noise or removes some of its components
would be rather useful for making the use of PCA and ICA
more robust for clinical practice.

In this work, we study the problem of reducing the
random noise while preserving the other deterministic
components in fMRI signals. A new adaptive technique is
proposed based on spectrum subtraction. The theoretical
analysis of the new technique and the implementation details
are presented. The new technique is tested using computer
simulations as well as real data and the performance is
analyzed. Finally, the value of the proposed method as a
preprocessing stage for PCA/ICA techniques is demonstrated.  

II. THEORY

Generally speaking, the fMRI temporal signal can be
modeled as the summation of the true activation signal, a
physiological baseline fluctuation component, and a random
noise component. The physiological baseline fluctuation
component can be considered as a deterministic yet unknown
signal. Therefore, we will consider a model that is composed
of the sum of one deterministic component d(.) incorporating
both the true signal and the physiological noise and an
uncorrelated stochastic component n(.). That is,
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s(t)  =  d(t)  +  n(t).                (1)
Since these two component are assumed independent, the
corresponding power spectrums are related by,

Pss(ω)= Pdd(ω)+ Pnn(ω),                   (2)
where cross terms vanish because the two components are
assumed uncorrelated. Hence, an estimate of the power
spectrum of the deterministic component takes the form,

Pdd(ω)= Pss(ω) – Pnn(ω).                   (3)
That is, the signal power spectrum is obtained by spectrum
subtraction of the noisy signal and noise power spectra. In
order to compute the deterministic signal component from its
power spectrum, the magnitude of the Fourier transform can
be obtained as the square root of the power spectrum. The
problem now becomes that of reconstructing the signal using
magnitude only information about its Fourier transform.
Several techniques can be used to do that. The one used for
this work relies on an estimate obtained from the phase of the
Fourier transform of the original signal. Hence, the Fourier
transform of the processed signal can be expressed as,

De(t)=   Pdd(ω)1/2 . Exp(j Phase(S(ω))).               (4)
The enhanced deterministic signal is just the inverse Fourier
transform of this expression.

III. METHODS

A. Adaptive Noise Model Estimation

In fMRI, the acquired data set usually contains large areas
of background and areas without activation. The time courses
of pixels within such areas can be used to estimate a suitable
model for the noise power spectrum. In our implementation,
only background pixels (defined by simple intensity masking
of the images) were used. Two methods can be used to
compute an estimate of the power spectrum of noise using
parametric and nonparametric approaches.

In the parametric approach, a noise model is assumed and
the model parameters are estimated from the data. The power
spectrum is subsequently calculated from the model. In the
case of fMRI data, such model can be assumed as a zero-
mean white Gaussian noise. Consequently, the power
spectrum can be simply obtained as a flat curve with
magnitude equal to an estimate of the variance of the
background areas. On the other hand, the nonparametric
approach does not assume a particular model for noise. The
averaged periodogram estimate for the noise power spectrum
is obtained directly from the pixel time courses of
background areas. Since the number of pixels in such areas is
expected to be large, the variance of such estimate is expected
to be very small.

The difference between the two estimation approaches is
that the parametric technique models the Gaussian random
noise component of the original signal, while the
nonparametric technique may also include other components
such as global baseline variations. The selection of which to
use depends on the type of subsequent analysis. In this work,
we present the results from the parametric approach to make
the analysis of the results consistent in comparison and to
keep the baseline variations in the processed data to assess the
performance of PCA and ICA in estimating such components.

B. Signal Power Spectrum Estimation

Since the proposed technique is applied to a single time
course at a time, the periodogram estimate of signal power
spectrum is expected to have a rather large variance [3]. As a
result, the subtraction of power spectra in (3) may contain
negative values in practical implementations. This causes a
problem in trying to compute the square root to recover the
processed signal. A simple approach to overcome this
problem is to replace all negative values in the subtraction
results by zero [3].

C. Statistical Noise Removal

Given the nature of the original signal, we observe that
the variance in the power spectrum estimate may only result
from the random component. Since the expected value of the
noise variation is known from the derived model and given
the statistical characteristics of the periodogram estimate, we
can express the noise at each of the power spectrum
frequency bins as a Gaussian random variable with mean and
variance both equal to the noise model [3]. As a result, the
subtraction in (3) would effectively remove only a part of the
noise power spectrum. In other words, the upper half of the
Gaussian distribution would still remain in the processed
signal.

To solve this problem, a slight modification to the
technique is added to allow direct control over the extent of
noise removed. The modified equation takes the form,

 Pdd(ω)= Pss(ω) –  α  . Pnn(ω).                   (5)
Here, the factor α is added to control the confidence of noise
removal. This problem can be expressed in the form of a
statistical z-test where the threshold α controls the p-value of
the test. That is, the larger the value of α, the less the
probability that the output power spectrum contains a noise
component. On the other hand, increasing this value would
increase the likelihood that some parts of the signal may also
be removed. Therefore, the selection of the value of α is
useful to fine-tune the results of the new technique. Several
optimization criteria can be used to select the value of this
parameter. An example of these is the use of entropy based
objective function optimized over the autocorrelation function
of the difference between the original and processed signals
for different α values. This favors the values of α that give an
autocorrelation function with narrow extent around zero and
of minimal side peaks. This tends to preserve the components
of the true signal, which give rise to periodic peaks in the
autocorrelation function. In this work, we used a fixed value
of this parameter that is equal to 1 to make it easier to
compare the results and assess the improvement after using
this technique as a preprocessing stage.

D. Analysis of Results Using PCA and ICA

To show the improvement in using PCA and ICA on the
processed signal, the new technique is applied to process all
pixel time courses in the acquired data set independently and
then the processed data set is used for subsequent PCA/ICA.
The PCA/ICA techniques were performed using a Matlab
(Math Works, Inc.) program [4]. The goal of this analysis is



to assess the performance of the new technique in enhancing
the results of PCA and ICA and stabilizing the convergence
characteristics of the ICA. Moreover, the difference signals
between the original and filtered data sets were also analyzed
using these techniques. This helps verify the absence of signal
components within this discarded part of the original signal.

IV. EXPERIMENTAL VERIFICATION

The proposed technique was verified using computer
simulations as well as actual data from a human volunteer.
The computer simulations were performed in a similar
fashion to [2] whereby a computer generated event-related
fMRI activation signal was added to an actual baseline data
set. The baseline data were collected on a healthy human
volunteer using an EPI sequence (TE/TR=25/500 ms,  FOV=
20cm x 20cm, slice thickness=5mm, images 640) on a
Siemens Magnetom Vision 1.5T clinical scanner. The number
of epochs was 8 and the length of each epoch was 64. The
generated activation was designed to include inter-epoch
variations in both the magnitude and width of the activation
signal in order to test the performance of the new technique in
preserving such variations. The overall standard deviation of
the generated activation was varied to test the performance
under different values for the signal-to-noise ratio (SNR) [2].

The actual data were obtained from an event-related fMRI
study performed on a normal human volunteer using a
Siemens 1.5T Magnetom Vision clinical scanner [2]. In this
study, an oblique slice through the motor and the visual
cortices was imaged using a T2*-weighted EPI sequence
(TE/TR=60/300ms, flip angle=55o, FOV=22cm x 22cm, slice
theckness=5mm). The subject performed rapid finger
movement cued by flashing LED goggles. The study consists
of 31 epochs with 64 images per epoch. Temporal data from
only 8 epochs of pixels in both the motor and visual cortices
were processed using the new method and compared to the
average of all epochs. The PCA and ICA techniques were
applied to decompose the signal into its basic components.
Both techniques were used to process time course signals
before and after the new technique is applied on pixels within
a window selected by the user. Moreover, the difference
signals were also analyzed from the same window.

V. RESULTS AND DISCUSSION

The results of applying the new technique to process
computer simulated fMRI data are shown in Fig. 1 for SNR
values of 1.0 and 0.5. As can be observed, the noise in the
original data was suppressed significantly in the output and
the difference signal appears free of signal components. In
Fig. 2, the proposed technique is used to process real fMRI
data from two activated pixels. The results look dramatically
improved compared to the original. In fact, they appear even
less noisy than the result from averaging while maintaining
the signal structure unaltered. We also notice that the baseline
variations also remained unaltered as a result of the use of the
parametric approach for our noise model. Again, the
difference signals appear to have no signal components. In
Figs. 3 and 4, the results of applying the PCA and ICA
techniques before and after processing with the new

technique are presented. The figures show the first four
components of each. The results appear very noise before
applying the new technique in both methods. The results after
it was used appear significantly clearer.  We notice that the
baseline variation component now appears in the ICA results,
which was not present in the analysis before denoising.
Moreover, severe instability was observed when using the
ICA iteration on noise data. In fact, the analysis of the
difference signal using this method never reached
convergence in any of our experiments. This supports our
hypothesis of the need to remove noise components to make
the number of components less than the number of signals.
Also, this shows that the proposed method was indeed
successful to remove such components without affecting the
true signal form.

The results of using the new technique suggest that it has
the effect of robust removal of random noise while preserving
deterministic signal components. Because it relies on
subtracting the noise component, it does not affect
independence of data points within the time course. The
technique also has a very small computational complexity. It
also has the advantage of being adaptive with very few
assumptions about the noise model and no assumptions about
signal. Finally, it provides statistical control over noise
removal using a single parameter. The results indicate that the
new method enables robust use of PCA and ICA. The
limitations of the new technique include the fact that noise in
the phase component is not removed and that spectrum
clipping may occur due to large variance in power spectrum
estimate from periodogram without averaging.  

VI. CONCLUSIONS

A new signal denoising technique was proposed for fMRI
signals. The method is adaptive and simple to implement
while offering a substantial improvement of signal to noise
ratio. The new technique was demonstrated for computer
simulated and real data and also shown to improve the
performance of PCA and ICA in analyzing fMRI data sets.
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Figure 1: Results from simulations at different SNR values.
.
Figure 2: Results from actual data for two pixel time courses.
Figure 3: PCA/ICA results before processing.
Figure 4: PCA/ICA results after processing
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